CoderZ™ Content Framework

CoderZ is an engaging self-paced virtual learning platform that provides interactive
lessons and activities designed to teach students principles of coding within the exciting
and challenging context of robotics.

There are five courses available from which schools/districts may select to implement:

New CoderZ Adventure (Nowce) Code Farm (Beginner)

Build with) Build with >
Blockly

E Build with = K Build w

Blockly s =8 i Bﬂockly

The CoderZ Content Framework provides an
overview of the standards, skills, and
concepts supported within all CoderZ
Materials, including the teacher/course

Build with - PR N ides and CoderZ’s professional

PythOﬂ - v development. Each course’s content is

‘ ' individually framed for efficient referencing.

TABLE OF CONTENT

™
CODERZ CONTENT FRAMEWORK.........ccoiiiiiiinnin, 1

The New CoderZ Adventure with Lego® Education Spike™ Prime...... 3

L0 Yo [N - 15 o o 1RO 7
Cyber Robotics 101......... e e e e 12
Cyber Robotics 102..........o e e e e 18

Python GYm......c. s s e s 24

The New CoderZ Adventure with LEGO®
Education SPIKE ™Prime

In this introductory coding course students are introduced to the basic principles of
coding within the context of robotics. While participating in a series of increasingly
complex tasks students learn about the relationship between hardware and software, the
role of mathematical modeling and data in computational problem solving, how basic
programming constructs can be combined to create complex algorithms, as well as
develop a foundation in key programming practices.

CeoderZ

The CoderZ Adventure with Lego® Education SPIKE™ Prime (Novice)

Standards, Skills, and Concepts

CSTA

Computer Systems

1B-CS-01 Describe how internal and external parts of computing devices function to
form a system.

1B-CS-02 Model how computer hardware and software work together as a system to
accomplish tasks.

Data and Analysis

1B-DA-07 Use data to highlight or propose cause-and-effect relationships, predicate
outcomes, or communicate an idea.

Algorithms and Programming

1B-AP-08 Compare and refine multiple algorithms for the same task and determine
which is the most appropriate

1B-AP-10 Create programs that include sequences, events, loops, and conditionals.

1B-AP-11 Decompose (break down) problems into smaller, manageable
subproblems to facilitate the program development process.

1B-AP-13 Use an interactive process to plan the development of a program by
including others’ perspectives and considering user preferences.

1B-AP-15 Test and debug (identify and fix errors) in a program or algorithm to
ensure it runs as intended.

Impacts of Computing

1B-IC-18 Discuss computing technologies that have changed the world, and
express how those technologies influence, and are influenced by, cultural
practices.

CeoderZ

The CoderZ Adventure with Lego® Education SPIKE™ Prime (Novice)

NGSS

3-5-ETS1-1 Define a simple design problem reflecting a need or a want that includes
specified criteria for success and constraints on materials, time, or cost.

3-5-ETS1-2 Generate and compare multiple possible solutions to a problem based on
how well each is likely to meet the criteria and constraints of the problem.

3-5-ETS1-37 Plan and carry out fair tests in which variables are controlled and failure
points are considered to identify aspects of a model or prototype that can be
improved.

K-12 Computer Science Framework

Computing Systems

o Troubleshooting - Check connections and power to resolve common issues. Explain
and demonstrate how rebooting a machine is commonly an effective strategy.

Algorithms and Programming

o Algorithms - Compare algorithms and select the one most appropriate for a specific
context/task.

o Control - Recognize patterns and effectively use loops to enhance the efficiency of
writing code.

o Program Development - Use an iterative process involving design, implementation, and

review when developing code.

Impacts of Computing

o Social Interaction - Analyze how computing technology’s facilitation of
communication and innovations influences social institutions such as family,

education, and the economy.

CeoderZ

The CoderZ Adventure with Lego® Education SPIKE™ Prime (Novice)

CC Math

Mathematical Practice

MP1
MP2
MP3
MP4
MP5
MP6
MP7
MP8

Make sense of problems and persevere in solving them.
Reason abstractly and quantitatively.

Construct viable arguments and critique the reasoning of others.
Model with mathematics.

Use appropriate tools strategically.

Attend to precision.

Look for and make use of structure.

Look for and express regularity in repeated reasoning.

21st Century Skills

o

o

Creativity and Innovation

Critical Thinking and Problem Solving

o Communication

o Collaboration

Computational Thinking Skills

o Decomposition

o Pattern Recognition

o Algorithm Design

Robotics Concepts and Skills

o Motion Planning - Direction

CeoderZ

Code Farm

The CoderZ Code Farm Course is a flexible 40-60 hour course that introduces 5th to 6%
grade students to key computer science and robotics concepts through a series of
game-like missions and projects. Each lesson is aligned to CSTA, NGSS, and Common
Core Standards and includes teacher support for facilitating and assessing student
learning.

With accessible videos, built-in classroom activities and discussions, and a discovery-
based approach, the course allows students to build their skills and knowledge while
engaging in a game-like environment that fosters community in the classroom. Targeted
skill-building lessons are paired with open-ended project work, so students can apply
what they’ve learned to a variety of challenging and authentic problems, deepening their
understanding while developing cross-cutting cognitive skills.

CeoderZ

Student Learning and Standards Alignment in Code Farm

In order to facilitate alignment to a wide range of standards, the student learning in CoderZ’s Code Farm has
been organized into a freestanding framework that can be mapped to a wide range of standards relevant in the
local context. The expected learning outcomes have been mapped to CSTA and NGSS-ETS and selected CC-
ELA standards. These mappings focus on the 5th grade level, but the objectives and associated learning
activities can be easily adapted to be more appropriate for older students.

Code Farm Expected Learning Outcomes

Student learning outcomes fall into six main categories. The first two categories, Robotics and Software
Development, include discipline-specific content knowledge aligned closely to the CSTA K12 standards. The
last four categories, Ethics, Creative Design, Collaboration, and Communication, are cross-cutting skills that
map to CSTA standards as well as other commonly used standards such as NGSS, ISTE, 21st Century Skills,
and Common Core ELA.

The curriculum also includes multiple opportunities to address key standards in Math and Science. While not
formally part of the expected learning outcomes, these opportunities have been separately identified to allow
teachers to highlight content appropriate for their classes.

Robotics
Modeling Computing Systems CSTA 1B-CS-01
Identify the different hardware and software components of a CSTA 1B-CS-02
computing system, and explain how they work together to perform
tasks
Sending and Receiving Information CSTA 1B-CS-04

Model how computing systems collect data from sensors,
send commands to hardware components, and share
information across different computing systems in order to
coordinate a task.

Using computing systems CSTA 1B-CS-03
Use appropriate troubleshooting strategies for when the CSTA 1B-NI-05
system is not working properly, as well as employing safe
practices around password security and responsible use.

Software Development

Software Development Process CSTA 1B-AP-11
Use a structured and iterative software development CSTA 1B-AP-13

CeoderZ

process that includes a goal, a step-by-step plan, and
opportunities for feedback and improvement.

Writing Algorithms
Use sequencing, loops, conditionals, events, and variables
to control a program’s behavior.

CSTA 1B-AP-09
CSTA 1B-AP-10

Debugging
Identify bugs in a program and use appropriate strategies to
investigate their causes and correct them.

CSTA 1B-AP-15

Ethics

Using Others’ Work

Integrate the work of other creators into a digital artifact,
respecting the creator’s copyright. Identify common
licenses and how they allow media to be used.

CSTA 1B-AP-12
CSTA 1B-AP-14
CSTA 1B-IC-21

Accessibility and Inclusion

Recognize the barriers to access and inclusion in a given
technology ,and design products that are accessible and
inclusive for a wide range of users.

CSTA 1B-IC-19

Social Impact
Discuss the potential impacts of a technology and how
those impacts vary from person to person.

CSTA 1B-IC-18

Creativity and Design

Criteria and Constraints

Identify appropriate criteria and constraints for a project, and
evaluate and improve products according to how well they
conform to those requirements.

NGSS 3-5-ETS1-1
CSTA 1B-AP-08

Using resources

Use a wide range of resources when designing a product,
and combine ideas from those resources in new and
effective ways.

CSTA 1B-AP-12

Generating Ideas

Generate a wide range of relevant and distinct design
solutions that are new or unique, and elaborate on them
with specific detail.

NGSS 3-5-ETS1-2

Collaboration

Shared Understanding
Constructively and respectfully manage disagreement,
actively seek input from all members, and maintain clear

CCSS.ELA-
LITERACY.SL.5.1
CSTA 1B-AP-17

CeoderZ

documentation of team decisions

Managing Team Work

Establish and honor collective goals and timelines, distribute
tasks equitably, while taking into account each member’s
unique traits and resources

CSTA 1B-AP-12
CSTA 1B-AP-16

Exchanging ideas

Seek out and provide help or feedback from others when
appropriate, and evaluate and incorporate other’s ideas into
a project

CSTA 1B-AP-13
CSTA 1B-IC-20

Communication

Explaining a Process

CSTA 1B-AP-17

Use presentations, demonstrations, and written reports to CCSS.ELA-

explain design choices, and maintain appropriate LITERACY.SL.5.4

documentation, including code comments. CCSS.ELA-
LITERACY.SL.5.5

Supporting an ldea CSTA 1B-NI-06

Justify a claim or point of view with evidence, organize data CSTA 1B-NI-07

to highlight a relationship or claim, or make a prediction.

Understanding Others CCSS.ELA-

Find and use relevant information from text, make LITERACY.RI.5.1

inferences and connections, and compare information from CCSS.ELA-

multiple sources. LITERACY.RIL.5.3
CCSS.ELA-

LITERACY.RIL5.10

CeoderZ

CSTA Standards Alignment

Code Farm fully addresses all CSTA standards in the 1B (3-5) grade band, as shown in the following heat map.

CSTA Grades 3-5

1B-CS-01

1B-CS-02

1B-CS-03

1B-NI-04

1B-NI-05 -

1B-DA-06

1B-DA-07

1B-AP-08

1B-AP-09

1B-AP-10

1B-AP-11

1B-AP-12

1B-AP-13

1B-AP-14

1B-AP-15

1B-AP-16

1B-AP-17

1B-IC-18

1B-IC-19

1B-IC-20

1B-IC-21

CeoderZ

NGSS Alignment

Code Farm fully addresses all NGSS Engineering Design performance expectations in the 3-5 grade band, as
shown in the following heat map. Extensions to support the 6-8 grade band are also available.

NGSS Grades 3-5

LO L1 L2 L3 L4 C1 P1 L5 L6 L7 L8 C2 P2 P3

3-5-ETS1-1

3-5-ETS1-2

3-5-ETS1-3

oo
12

CeoderZ

CC-Math Alignment - Grade Specific Standards

CCSS.MATH.CONTENT.5.0A.A.
Write and interpret numerical expressions.

As students code they must represent mathematical relationships (e.g. addition, multiplication) as expressions.
Within the context of code, these expressions use parentheses to indicate the order of operations.

CCSS.MATH.CONTENT.5.0A.B
Analyze patterns and relationships.

As students make use of structure to simplify their programming, they must abstract out the particular values of
numbers to identify patterns. For example, students may realize that the value three must be added to a
variable in each iteration of a loop without calculating the variable’s specific value each time.

CCSS.MATH.CONTENT.5.NBT.A
Understand the place value system.

In order to create algorithms with sufficient precision to complete a task, students must work with decimal
values as specific as one thousandth, using place value to compare the magnitude of different choices and
calibrate their robots to move as intended.

CCSS.MATH.CONTENT.5.MD.A
Convert like measurement units within a given measurement system.

Students are presented with multiple options for specifying measurements (e.g. seconds versus milliseconds)
and must be able to both convert between them and determine the most appropriate option for their task.

CCSS.MATH.CONTENT.5.MD.B
Represent and interpret data.

As students test different algorithmic solutions, they must collect and represent data, then use their
interpretations of that data to make and defend a decision for which algorithm is most appropriate.

oo
13

CeoderZ

CC-Math Alignment - Practices

Beyond the grade specific standards addressed in the curriculum, Code Farm provides extensive support for
the CCSS Standards for Mathematical Practice.

CCSS.MATH.PRACTICE.MP1 Make sense of problems and persevere in solving them.

In each lesson, students are tasked with problems of increasinging complexity that they must analyze and
overcome using the algorithmic tools at their disposal. Within the curriculum, ‘failure’ normalized, and students
are encouraged to see setbacks and debugging as a normal part of the programming process.

CCSS.MATH.PRACTICE.MP2 Reason abstractly and quantitatively.

Programmers must move fluidly between the abstract and concrete, and Code Farm prompts students to use
the concrete quantitative problems in the sample simulations to abstract out general algorithmic rules and
structures. In doing so, students learn to think flexibly about problems at various layers of abstraction.

CCSS.MATH.PRACTICE.MP3 Construct viable arguments and critique the reasoning of others.

As student code becomes more complex, they are encouraged to evaluate various approaches according to
given criteria and constraints. In the culminating projects, students must present their reasoning, explaining the
differences between approaches and the advantages of the one they chose.

CCSS.MATH.PRACTICE.MP4 Model with mathematics.

Understanding the relationships between speed, momentum, and other physics concepts is key to navigating
with robots. In Code Farm, students use the data they collect to model these relationships, using these models
to make predictions about robot movement and justifying algorithmic choices.

CCSS.MATH.PRACTICE.MP5 Use appropriate tools strategically.

Open problems and projects give students opportunities to choose from multiple algorithmic constructs and
overall design solutions. Students justify these choices based on quantitative criteria that align to the overall
goals of the problem at hand, and explain how different approaches can optimize for different priorities.

CCSS.MATH.PRACTICE.MP6 Attend to precision.

The debugging process demonstrates how small errors in code can have a big impact on how the program
runs. Students learn to ensure their code is error free, debugging it when necessary, and to pay attention to
hardware limitations that affect the robot’s ability to maneuver precisely through the simulation.

CCSS.MATH.PRACTICE.MP7 Look for and make use of structure.

Computing highlights the role that structure plays in problem solving, providing algorithmic constructs designed
to clarify and simplify the coding process. Students recognize and use patterns in code, then apply and
combine the appropriate programming constructs to develop solutions to complex problems.

CCSS.MATH.PRACTICE.MP8 Look for and express regularity in repeated reasoning.

Leveraging repetition is at the core of programming. In Code Farm, students must use repeated reasoning to
solve similar challenges, then abstract out the general programming ‘rules’ for the various situations they
encounter. In addition, programming constructs such as the repeat loop reinforce the power of repetition in
computing.

CeoderZ

CC-ELA Alignment

Computing and robotics provide students with opportunities to engage with many varieties of text. Whether
reading user profiles, looking up technical information, or researching previous innovations, students must find,
interpret, and use relevant information. These samples provide models when students document and present
their own designs.

Key standards addressed at the Grade 5 level include:

CCSS.ELA-LITERACY.RI.5.1
Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from
the text.

CCSS.ELA-LITERACY.RIL5.2
Determine two or more main ideas of a text and explain how they are supported by key details; summarize the
text.

CCSS.ELA-LITERACY.RL5.3
Explain the relationships or interactions between two or more individuals, events, ideas, or concepts in a
historical, scientific, or technical text based on specific information in the text.

CCSS.ELA-LITERACY.SL.5.1
Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse
partners on grade 5 topics and texts, building on others' ideas and expressing their own clearly.

CCSS.ELA-LITERACY.SL.5.2
Summarize a written text read aloud or information presented in diverse media and formats, including visually,
quantitatively, and orally.

CCSS.ELA-LITERACY.SL.5.4
Report on a topic or text or present an opinion, sequencing ideas logically and using appropriate facts and
relevant, descriptive details to support main ideas or themes; speak clearly at an understandable pace.

CCSS.ELA-LITERACY.SL.5.5
Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to
enhance the development of main ideas or themes.

CCSS.ELA-LITERACY.SL.5.6
Adapt speech to a variety of contexts and tasks, using formal English when appropriate to task and situation.
(See grade 5 Language standards 1 and 3 here for specific expectations.)

CCSS.ELA-LITERACY.RIL.5.10
By the end of the year, read and comprehend informational texts, including history/social studies, science, and
technical texts, at the high end of the grades 4-5 text complexity band independently and proficiently.

CeoderZ

ISTE Alignment

As a robotics and computing curriculum, the focus of Code Farm is on the creation of new technologies, rather
than their use. However, as students must be sophisticated users of technology to innovate, there is extensive
coverage of the ISTE standards.

Empowered Learner

In creating and implementing new digital artifacts, students have the freedom to set their own goals and decide
how to achieve them. Self-differentiation is facilitated as students set their own goals in mission, deciding what
‘success’ can mean for them, in addition to the extra challenge missions available. Rubric-based projects allow
students to decide how to demonstrate learning in a way that is personally meaningful to them.

Digital Citizen

Safety and responsibility are integrated throughout the curriculum. Students discuss ethical issues that arise
with new technologies and reflect on the impact of their own creations. They are explicitly assessed on
responsible and ethical use of intellectual property, as well as their reflections on how physical and digital
security measures maintain safety and privacy online.

Knowledge Constructor

Use of resources is an authentic practice in both computing and robotics, and students are asked to synthesize
knowledge from documentation, tips, instructional videos, as well as their own explorations. They then
collaborate with others to test and refine this new knowledge as they work to achieve various goals.

Innovative Designer

Multiple projects challenge students to design technological solutions to various problems. Students are
pushed to innovate as they consider the needs of different users, develop criteria, and work within the given
constraints to create products that integrate and refine various technological features.

Computational Thinker

As they work through the various missions and projects, students engage in a wide variety of programming
tasks, analyzing, testing, and comparing various algorithmic solutions. They break problems into manageable
pieces, then use patterns and abstraction to identify and combine appropriate programming constructs.

Creative Communicator

Students express their ideas in multiple ways throughout the curriculum: in informal discussions, design
presentations, and digital artifacts. These works include individual, collaborative, and repurposed creations,
and students are expected to consider audience, purpose, and context as they communicate.

Global Collaborator

Students collaborate on multiple projects throughout the curriculum, taking on a variety of roles and
responsibilities. They exchange feedback from those without and outside of their teams, and are expected to
consider the perspectives of users with a wide variety of perspectives.

CeoderZ

Developing 21st Century Skills

Collaboration, creative problem solving, social awareness are integral to robotics. Students work together on
projects that challenge them to think in new ways, understand the different needs and perspectives of others,
and work to respond to those needs effectively, considering the social impact of existing technology and of the
products they develop.

Collaboration

Students collaborate on multiple projects throughout the curriculum, taking on a variety of roles and
responsibilities. They exchange feedback from those without and outside of their teams, and are expected to
consider the perspectives of users with a wide variety of perspectives. Collaboration is integrated into most
lessons, but is also explicitly taught and scaffolded within the context of complex projects. Students are
expected to collaborate with peers in solving problems, creating digital artifacts, and refining knowledge.

Communication

Robotics and computing provide a unique lens on communication, as students are expected to communicate
not only with natural language in interactions with others, but also with computing language, to instruct a robot.
This differentiation prompts reflection on the complexity of communication, and how communication styles
change in response to different audiences and purposes. Students must communicate their ideas both in code
and natural language, as well as give formal multimedia presentations on their design process.

Critical Thinking

As students encounter various problems and perspectives, they must analyze complex systems, consider
tradeoffs between solutions, and use various resources to determine their path forward. In defending their
design choices, they articulate their priorities and how those are reflected in a final product. These types of
problem solving skills are further honed as students consider the perspectives of those different from
themselves, and how those perspectives might impact a design solution’s effectiveness or usability.

Creativity

Creativity is at the heart of robotics, as engineers design and create innovative products that push technology
forward. Design challenges and missions provide a wide range of opportunities for students to practice
creativity, and the creative process is scaffolded through exposure to sample designs for inspiration, criteria and
constraints for success, and a step-by-step design process. Creative thinking is framed as a skill that can be
learned, and students are given clear instructions for its development.

CeoderZ

Code Farm (Beginner)

Standards, Skills, and Concepts

CSTA

Computer Systems

1B-CS-01

1B-CS-02

1B-CS-03

Describe how internal and external parts of computing devices function
to form a system.

Model how computer hardware and software together as a system to
accomplish tasks.

Determine potential solutions to solve simple hardware and software
problems using common troubleshooting strategies.

Algorithms and Programming

1B-AP-08

1B-AP-10

1B-AP-11

1B-AP14

1B-AP-15

1B-AP-17

Compare and refine multiple algorithms for the same task and determine
which is the most appropriate.

Create programs that include sequences, events, loops, and
conditionals.

Decompose (break down) problems into smaller, manageable
subproblems to facilitate the program development process.

Observe intellectual property rights and give appropriate attribution when
creating or remixing programs.

Test and debug (identify and fix errors) a program or algorithm to ensure
it runs as intended.

Describe choices made during program development using code
comments, presentations, and demonstrations.

CeoderZ

Code Farm (Beginner)

Impacts of Computing

1B-AP-17

1B-1C-19

1B-1C-20

1B-I1C-21

Describe choices made during program development using code
comments, presentations, and demonstrations.

Brainstorm ways to improve the accessibility and usability of technology
products for the diverse needs and wants of users.

Seek diverse perspectives for the purpose of improving computational
artifacts.

Use public domain or creative commons media, and refrain from copying
or using material created by others without permission.

Networks & the Internet

1B-NI-04

1B-NI-05

NGSS

3-5-ETS1-1

3-5-ETS1-2

Model how information is broken down into smaller pieces, transmitted
as packets through multiple devices over networks and the Internet, and
reassembled at the destination.

Discuss real-world cybersecurity problems and how personal information
can be protected.

Define a simple design problem that can be solved through the
development of an object, tool, process, or system and includes several
criteria for success and constraints on materials, time, or cost.

Generate and compare multiple solutions to a problem based on how
well they meet the criteria and constraints of the design problem.

CeoderZ

Code Farm (Beginner)

K-12 Computer Science Framework

Computing Systems

o Devices - Examine the interaction between humans and computing devices.
Evaluate and analyze the advantages, disadvantages, and recognize the unintended
consequences.

o Troubleshooting - Deploy a structured process to troubleshoot problems within a
system to ensure potential solutions are not overlooked and simple issues are
resolved.

Algorithms and Programming

o Algorithms - Design, test, and debug algorithms that are readable and easy to follow.

o Variables - Understand and use variables to represent and process data to produce
varying outputs.

o Control - Use loops, conditions, and other control structures to create more complex
programs.

o Modularity - Use functions to make code easier to reuse and read.

Networks and the Internet

o Cybersecurity - Explain the importance of protecting information sent and received
across networks from unauthorized access and modification (encryption and
Hypertext Transfer Protocol Secure - HTTPS).

Data and Analysis

o Collection - Discuss how using sensors with a robot to collect data regarding its
environment and make decisions about the next steps to take is similar to the human
process and how robots and humans interact.

CeoderZ

Code Farm (Beginner)

CC Math

Mathematical Practice

MP1 Make sense of problems and persevere in solving them.

MP2 Reason abstractly and quantitatively.

MP3 Construct viable arguments and critique the reasoning of others.
MP4 Model with mathematics.

MP5 Use appropriate tools strategically.

MP6 Attend to precision.

MP7 Look for and make use of structure.

MP8 Look for and express regularity in repeated reasoning.

21st Century Skills

Learning and Innovation Skills

o Creativity and Innovation
o Critical Thinking and Problem Solving

o Communication and Collaboration

Information, Media and Technology Skills

o Information Literacy

o Information and Communications Technology (ICT)

Life and Career Skills

o Flexibility and Adaptability
o Initiative and Self-direction
o Social and Cross-Cultural Skills

o Productivity and Accountability

o Leadership and Responsibility

CeoderZ

Cyber Robotics 101

In this beginner’s coding course students are introduced to the principles of coding within
the context of robotics. While engaged in a series of activities with increasing complexity
students learn the essential principles of robotics including motion planning, motion
planning with sensors, the relationship between hardware and software, the role of
mathematical modeling and data in computational problem solving, the importance of
quality planning, as well as develop the ability to execute good programming practices.
CoderZ and supporting integrated content is sequenced to meet STEAM objectives and
is designed to provide students authentic learning opportunities to increase interest and
engagement while moving from acquisition of knowledge to transference of learning.

CeoderZ

Cyber Robotics 101 (Beginner)

Standards, Skills, and Concepts

CSTA

Computer Systems

2-CS-02

Design projects that combine hardware and software components to
collect and exchange data.

Algorithms and Programming

2-AP-10

2-AP-12

2-AP-13

2-AP-14

2-AP-17

2-AP-18

2-AP-19

Use flowcharts and/or pseudocode to address complex problems as
algorithms.

Design and iteratively develop programs that combine control structures,
including nested loops and compound conditionals.

Decompose problems and subproblems into parts to facilitate the design,
implementation, and review of programs.

Create procedures with parameters to organize code and make it easier
to use.

Systematically test and refine programs using a range of test cases.

Distribute tasks and maintain a project timeline when collaboratively
developing computational artifacts.

Document programs in order to make them easier to follow, test, and
debug.

CeoderZ

Cyber Robotics 101 (Beginner)

Impacts of Computing

2-1C-20

2-1C-21

2-1C-23

NGSS

MS-ETS1-2

MS-ETS1-3

Compare tradeoffs associated with computing technologies that affect
people’s everyday activities and career options.

Discuss issues of bias and accessibility in the design of existing
technologies.

Describe tradeoffs between allowing information to be public and
keeping information private and secure.

Evaluate competing design solutions using a systematic process to
determine how well they meet the criteria and constraints of the problem.

Analyze data from tests to determine similarities and differences among
several design solutions to identify the best characteristics of each that
can be combined into a new solution to better meet the criteria for

Success.

CeoderZ

Cyber Robotics 101 (Beginner)

K-12 Computer Science Framework

Computing Systems

o Devices - Examine the interaction between humans and computing devices.
Evaluate and analyze the advantages, disadvantages, and recognize the unintended
consequences.

o Troubleshooting - Deploy a structured process to troubleshoot problems within a
system to ensure potential solutions are not overlooked and simple issues are
resolved.

Algorithms and Programming

o Algorithms - Design, test, and debug algorithms that are readable and easy to follow.

o Variables - Understand and use variables to represent and process data to produce
varying outputs.

o Control - Use loops, conditions, and other control structures to create more complex
programs.

o Modularity - Use functions to make code easier to reuse and read.

Networks and the Internet

o Cybersecurity - Explain the importance of protecting information sent and received
across networks from unauthorized access and modification (encryption and
Hypertext Transfer Protocol Secure - HTTPS).

Data and Analysis

o Collection - Discuss how using sensors with a robot to collect data regarding its

environment and make decisions about the next steps to take is similar to the human
process and how robots and humans interact.

CeoderZ

Cyber Robotics 101 (Beginner)

CC Math

Mathematical Practice

MP1 Make sense of problems and persevere in solving them.

MP2 Reason abstractly and quantitatively.

MP3 Construct viable arguments and critique the reasoning of others.
MP4 Model with mathematics.

MP5 Use appropriate tools strategically.

MP6 Attend to precision.

MP7 Look for and make use of structure.

MP8 Look for and express regularity in repeated reasoning.

21st Century Skills

Learning and Innovation Skills

o Creativity and Innovation
o Critical Thinking and Problem Solving

o Communication and Collaboration

Information, Media and Technology Skills

o Information Literacy

o Information and Communications Technology (ICT)

Life and Career Skills

o Flexibility and Adaptability
o Initiative and Self-direction
o Social and Cross-Cultural Skills

o Productivity and Accountability

o Leadership and Responsibility

CeoderZ

Cyber Robotics 101 (Beginner)

Computational Thinking Skills

O

Decomposition

o Pattern Recognition

O

Algorithm Design

o Abstraction

Robotics Concepts and Skills

o Motion Planning

O

O

O

O

O

Direction
Power/Speed
Distance
Duration

Arm

o Sensor-based Motion Planning

o Motors and Optical Encoders

o Sensors and Controllers

O

O

O

O

Touch - collision
Gyroscope - rotation
Ultrasonic - distance

Light/Color - surface color/brightness

CeoderZ

Cyber Robotics 102

Cyber Robotics 102 (CR102) is a continuation of the Cyber Robotics 101 course. This
course teaches STEM and coding topics using gamification in a physics-based
environment. Through a series of activities with increasing complexity CR102 introduces

autonomous systems, teaches scanning and mapping an environment, error correction
methods, and different system control algorithms. Cyber Robotics 102 provides a
deeper coding experience with more opportunities to use conditionals, variables,
functions, etc. CoderZ and supporting integrated content is sequenced to meet STEAM
objectives and is designed to provide students authentic learning opportunities to

increase interest and engagement while moving from acquisition of knowledge to
transference of learning. By the end of the course students will understand the forces of
physics acting on robots and the influence those forces have on a robot’s performance.
Students will effectively control and program a robot to interact with objects around it and
safely navigate through changing environments.

CeoderZ

Cyber Robotics 102 (Intermediate)

Standards, Skills, and Concepts

CSTA

Computer Systems

2-CS-02 Design projects that combine hardware and software components to
collect and exchange data.

Algorithms and Programming

2-AP-10 Use flowcharts and/or pseudocode to address complex problems as
algorithms.
2-AP-11 Create clearly named variables that represent different data types and

perform operations on their values.

2-AP-12 Design and iteratively develop programs that combine control structures,
including nested loops and compound conditionals.

2-AP-13 Decompose problems and subproblems into parts to facilitate the design,
implementation, and review of programs.

2-AP-14 Create procedures with parameters to organize code and make it easier
to use.

2-AP-17 Systematically test and refine programs using a range of test cases.

2-AP-18 Distribute tasks and maintain a project timeline when collaboratively

developing computational artifacts.

2-AP-19 Document programs in order to make them easier to follow, test, and
debug.

CeoderZ

Cyber Robotics 102 (Intermediate)

Impacts of Computing

2-1C-20 Compare tradeoffs associated with computing technologies
that affect people’s everyday activities and career options.

2-1C-21 Discuss issues of bias and accessibility in the design of
existing technologies.

2-1C-23 Describe tradeoffs between allowing information to be public
and keeping information private and secure.

NGSS

MS-ETS1-2 Evaluate competing design solutions using a systematic
process to determine how well they meet the criteria and
constraints of the problem.

MS-ETS1-3 Analyze data from tests to determine similarities and
differences among several design solutions to identify the
best characteristics of each that can be combined into a
new solution to better meet the criteria for success.

CeoderZ

Cyber Robotics 102 (Intermediate)

K-12 Computer Science Framework

Computing Systems

(@)

Devices - Examine the interaction between humans and computing devices.
Evaluate and analyze the advantages, disadvantages, and recognize the unintended
consequences.

Troubleshooting - Deploy a structured process to troubleshoot problems within the
system to ensure potential solutions are not overlooked and simple issues are
resolved.

Algorithms and Programming
Algorithms - Design, test, and debug algorithms that are readable and easy to follow.

Variables - Understand and use variables to represent and process data to produce
varying outputs.

Control - Use loops, conditions, and other control structures to create more complex
programs.

Modularity - Use functions to make code easier to reuse and read.

Networks and the Internet

(@)

Cybersecurity - Explain the importance of protecting information sent and received
across networks from unauthorized access and modification (encryption and
Hypertext Transfer Protocol Secure - HTTPS).

Data and Analysis

(@)

Collection - Discuss how using sensors with a robot to collect data regarding its
environment and make decisions about the next steps to take is similar to the human

process and how robots and humans interact.

CeoderZ

Cyber Robotics 102 (Intermediate)

CC Math

Mathematical Practice

MP1 Make sense of problems and persevere in solving them.

MP2 Reason abstractly and quantitatively.

MP3 Construct viable arguments and critique the reasoning of others.
MP4 Model with mathematics.

MP5 Use appropriate tools strategically.

MP6 Attend to precision.

MP7 Look for and make use of structure.

MP8 Look for and express regularity in repeated reasoning.

21st Century Skills

Learning and Innovation Skills

o Creativity and Innovation
o Critical Thinking and Problem Solving

o Communication and Collaboration

Information, Media and Technology Skills

o Information Literacy

o Information and Communications Technology (ICT)

Life and Career Skills

o Flexibility and Adaptability
o Initiative and Self-direction
o Social and Cross-Cultural Skills

o Productivity and Accountability

o Leadership and Responsibility

CeoderZ

Cyber Robotics 102 (Intermediate)

Computational Thinking Skills

O

o

O

o

Decomposition
Pattern Recognition
Algorithm Design

Abstraction

Robotics Concepts and Skills

o Motion Planning

O

O

O

O

O

O

Direction
Power/Speed
Distance
Duration
Brake

Arms

o Sensor-based Motion Planning

o Motors and Optical Encoders

o Sensors and Controllers

O

o

o

Touch - collision
Gyroscope - rotation and tilts (x, y, z)
Ultrasonic - distance

Light/Color - surface color/brightness

CeoderZ

Python Gym

Python Gym is an advanced course providing teachers and students the opportunity to
code in Python, a text-based computer language, using the CoderZ physically-based
environment introduced in Cyber Robotics 102. While engaged in a series of activities with
increasing complexity students learn the essential principles of text-based coding
including syntax and debugging and continue to develop best programming practices for
robotics including; motion planning, motion planning with sensors, physics, computational
problem solving, and the importance of quality planning. Python Gym provides
opportunities to use conditionals, variables, functions, modules and more.

CoderZ and supporting integrated content is sequenced to meet STEAM objectives and
is designed to provide students authentic learning opportunities to increase interest and
engagement while moving from acquisition of knowledge to transference of learning.

CeoderZ

Python Gym (Advanced)

Standards, Skills, and Concepts

CSTA

Computer Systems

2-CS-02 Design projects that combine hardware and software components to
collect and exchange data.

3A-CS-01 Explain how abstractions hide the underlying implementation details
of computing systems embedded in everyday objects.

Algorithms and Programming

2-AP-10 Use flowcharts and/or pseudocode to address complex problems as
algorithms.
2-AP-11 Create clearly named variables that represent different data types and

perform operations on their values.

2-AP-12 Design and iteratively develop programs that combine control
structures, including nested loops and compound conditionals.

2-AP-13 Decompose problems and subproblems into parts to facilitate the
design, implementation, and review of programs.

2-AP-14 Create procedures with parameters to organize code and make it
easier to use.

2-AP-17 Systematically test and refine programs using a range of test cases.

2-AP-18 Distribute tasks and maintain a project timeline when collaboratively
developing computational artifacts.

2-AP-19 Document programs in order to make them easier to follow, test, and
debug.

3A-AP-17

3A-AP-18

3B-AP-11

3B-AP-16

3B-AP-23

CeoderZ

Python Gym (Advanced)

Decompose problems into smaller components through systematic
analysis, using constructs such as procedures, modules, and/or
objects.

Create artifacts by using procedures within a program, combinations
of data and procedures, or independent but interrelated programs.

Evaluate algorithms in terms of their efficiency, correctness, and
clarity.

Demonstrate code reuse by creating programming solutions using
libraries and APIs.

Evaluate key qualities of a program through a process such as code
review.

Impacts of Computing

2-1C-20

2-1C-21

2-1C-23

3A-1C-24

3A-1C-28

3A-1C-30

3B-1C-27

Compare tradeoffs associated with computing technologies that affect
people’s everyday activities and career options.

Discuss issues of bias and accessibility in the design of existing
technologies.

Describe tradeoffs between allowing information to be public and
keeping information private and secure.

Evaluate the ways computing impacts personal, ethical, social,
economic, and cultural practices.

Explain the beneficial and harmful effects that intellectual property
laws can have on innovation.

Evaluate the social and economic implications of privacy in the
context of safety, law, or ethics.

Predict how computational innovations that have revolutionized
aspects of our culture might evolve.

CeoderZ

Python Gym (Advanced)

NGSS

MS-ETS1-2 Evaluate competing design solutions using a systematic process to
determine how well they meet the criteria and constraints of the
problem.

MS-ETS1-3 Analyze data from tests to determine similarities and differences among

several design solutions to identify the best characteristics of each that
can be combined into a new solution to better meet the criteria for
success.

K-12 Computer Science Framework

Computing Systems

o Devices — Examine

o e the interaction between humans and computing devices. Evaluate and analyze the
advantages, disadvantages, and recognize the unintended consequences.

o Troubleshooting - Deploy a structured process to troubleshoot problems within the
system to ensure potential solutions are not overlooked and simple issues are
resolved.

o Hardware and Software - Explore the interactions between hardware, software and
user of a computing system and evaluate the flow of information.

CeoderZ

Python Gym (Advanced)

Algorithms and Programming

o Algorithms - Design, test, and debug algorithms that are readable and easy to follow.
Evaluate and select algorithms based on performance, reusability, and ease of
implementation.

o Variables - Understand and use variables to represent and process data to produce
varying outputs.
Use data structures to effectively manage program complexity (based on
functionality, storage, and performance tradeoffs).

o Control - Use loops, conditions, and other control structures to create more complex
programs.
Evaluate control structures and control structure combinations considering the
tradeoffs related to implementation, readability, and program performance.

o Modularity - Use functions to make code easier to reuse and read.

Use modules to develop and manage complex tasks/programs.

Networks and the Internet

o Cybersecurity - Explain the importance of protecting information sent and received
across networks from unauthorized access and modification (encryption and
Hypertext Transfer Protocol Secure - HTTPS).

Data and Analysis

o Collection - Discuss how using sensors with a robot to collect data regarding its
environment and make decisions about the next steps to take is similar to the human
process and how robots and humans interact.

CeoderZ

Python Gym (Advanced)

CC Math

Mathematical Practice

MP1 Make sense of problems and persevere in solving them.

MP2 Reason abstractly and quantitatively.

MP3 Construct viable arguments and critique the reasoning of others.
MP4 Model with mathematics.

MP5 Use appropriate tools strategically.

MP6 Attend to precision.

MP7 Look for and make use of structure.

MP8 Look for and express regularity in repeated reasoning.

21st Century Skills

Learning and Innovation Skills

o Creativity and Innovation
o Critical Thinking and Problem Solving

o Communication and Collaboration

Information, Media and Technology Skills

o Information Literacy

o Information and Communications Technology (ICT)

Life and Career Skills

o Flexibility and Adaptability
o Initiative and Self-direction
o Social and Cross-Cultural Skills

o Productivity and Accountability

o Leadership and Responsibility

CeoderZ

Python Gym (Advanced)

Computational Thinking Skills

o

Decomposition

o Pattern Recognition

o

Algorithm Design

o Abstraction

Robotics Concepts and Skills

o Motion Planning

O

O

O

O

O

O

Direction
Power/Speed
Distance
Duration
Brake

Arms

o Sensor-based Motion Planning

o Motors and Optical Encoders

o Sensors and Controllers

O

o

o

Touch - collision
Gyroscope - rotation and tilts (x, y, z)

Ultrasonic - distance

Light/Color - surface color/brightness

	Code_farm.pdf
	Code_farm.pdf
	Student Learning and Standards Alignment in Code Farm
	Code Farm Expected Learning Outcomes
	CSTA Standards Alignment
	NGSS Alignment
	CC-Math Alignment - Grade Specific Standards
	CC-Math Alignment - Practices
	CC-ELA Alignment
	ISTE Alignment
	Developing 21st Century Skills
	Collaboration
	Communication
	Critical Thinking
	Creativity

